
4:)
,,1"

tt'_

I

O"
Z

",1"

,--0
_N

_0
_0

,--I
I

p o C)',

0"-,
Z CL L" ...J

I-- _.,,

J 0"-,

IJ.,

g

Ct}

r:C "_ ,"_

t,_ Z _,- ¢.Z

Z_ 'I?
," 23,'4 ff'

An Annual Progress Report
Grant No. NAG-l-1123

April 1, 1990- March 31, 1991

2 acT/

SOFTWARE FAULT TOLERANCE USING DATA DIVERSITY

Submitted to:

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention:

Dr. D. E. Eckhardt, Jr., ISD

M/S 478

Submitted by:

John C. Knight
Associate Professor

f
!

Report No. UVA/528344/CS92/I Ol

July 1991

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF

ENGINEERING
& APPLIED SCIENCE

University of Virginia
Thornton Hall -

Charlottesville, VA 22903

UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-

rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160

faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These

range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-

space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-

neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-

puter Science. Within these disciplines there are well equipped laboratories for conducting highly

specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only

graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which Includes approximately 2,000 faculty and a total of full-time student

enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,

Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts

and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-

neering research program. The School of Engineering and Applied Science is an integral part of this

University community which provides opportunities for interdisciplinary work in pursuit of the basic goals

of education, research, and public service.

An Annual Progress Report
Grant No. NAG-1-1123

April 1, 1990 - March 31, 1991

SOFTWARE FAULT TOLERANCE USING DATA DIVERSITY

Submitted to:

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention:

Dr. D. E. Eckhardt, Jr., ISD

M/S 478

Submitted by:

John C. Knight

Associate Professor

Department of Computer Sciencew

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528344/CS92/101

July 1991

Copy No.

-\

TABLE OF CONTENTS

1. Introduction ...

2. Previous Work ...

2.1

2.2

2.3

2.4

Failure Regions

Data Reexpression

Retry Blocks ...

N-Copy Programming

REFERENCES ...

APPENDIX A: On the Effectiveness of Data Diversity As An Error
Detection Mechanism

APPENDIX B: Applying Data Diversity to Differential Equation Solvers

Pag_e_

1

3

3

4

7

8

9

it

1. INTRODUCTION

During the grant reporting period, the research carried out has involved the development of

the technique known as data diversity. Data diversity relies on a different form of redundancy

from existing approaches to software fault tolerance and is substantially less expensive to

implement. Data diversity can also be applied to software testing and greatly facilitates the

automation of testing. Up to now, it had been explored both theoretically and in a pilot study,

and had been shown to be a promising technique. We have continued to develop data diversity in

various areas under this grant. The basic concepts of data diversity and its relation to other

techniques are presented in section 1 of this report. Previous work and basic concepts are

reviewed in section 2. The results obtained under this grant are presented in two self-contained

papers that are included in this report as appendices.

Various methods for making software that is fault-tolerant have been proposed in an effort

to provide substantial improvements in the reliability of software for safety-critical applications.

At execution time, the fault-tolerant structure attempts to cope with the effect of those faults that

have survived the development process. The two best-known methods of building fault-tolerant

software are N-version programming [3] and recovery blocks [7]. To tolerate faults, both of these

techniques rely on design diversity, i.e., the availability of multiple implementations of a

specification. Software engineers assume that the different implementations use different designs

and thereby, it is hoped, contain different faults.

N-version programming requires the separate, independent preparation of multiple (i.e.

"N") versions of a program for some application. These versions are usually executed in parallel

in the application environment; each receives identical inputs, and each produces its version of

the required outputs. A decision function collects the outputs and selects the system's output

from them.

-1-

The recovery block structure submits the results of an algorithm to an acceptance test. If

the results fail the test, the system restores the state of the machine that existed just prior to

execution of the algorithm and executes an alternate algorithm. The system repeats this process

until it exhausts the set of alternates or produces a satisfactory output.

It is well known that software often fails for special cases in the data space t. In practice, a

program may survive extensive testing, work for many cases, and then fail on a special case. The

special case may take the form of what seems to be an obscure set of values in the data. Testing

frequently fails to reveal faults associated with special cases precisely because the test harness

does not generate the exact circumstances required. A test data set whose values are merely close

to the values that cause the program to fail does not uncover the fault.

These observations suggest that if software fails under a particular set of execution

conditions, a minor perturbation of those execution conditions might allow the software to work.

Other researchers have exploited this property in specific instances. Gray observed that certain

faults that caused failure in an asynchronous commercial system did not always cause failure if

the same inputs were submitted to a second execution [5]. The system succeeded on the second

execution due to a chance reordering of the asynchronous events. Gray introduced the term

"Heisenbugs" to describe these faults and their apparent non-deterministic manifestations.

Morris has proposed "temporal separation" of the input data to a dual version system [6].

The versions use data from adjacent real-time frames rather than the same frame. Since the

versions read sensor data at different times, the data tend to differ. The system corrects for this

discrepancy so that it can vote on the outputs of the versions. It is hoped that the use of time-

skewed data will prevent the versions from failing simultaneously.

i'For example, see [8], pp. 347-348.

-2-

Eachof theseapproachesattemptsto avoidfaultsby operatingsoftwarewith altered

executionconditions.Eachapproachreliesupon circumstanceto changethe conditions.

However,executionconditionscanbechangeddeliberately.For example,concurrentsystems

neednot rely on a chancereorderingof events. If reorderingeventsmightallow a second

executionto succeed,thenthe systemshouldenforcea reordering.Changingthe processor

dispatchingalgorithmafterstaterestorationforcesa differentexecutionsequence.Similarly,

skewingtheinputsto theversionsin anN-version system does not require the passage of time.

Inputs can be manipulated algorithmically. Many real-valued quantities have tolerances set by

their specifications, and all values within those tolerances are logically equivalent.

Data diversity is an orthogonal approach to design diversity and a generalization of the

work cited above. A diverse-data system exploits the fact that a slight change in the operating

conditions, particularly the input data, is often sufficient to permit a program to execute correctly.

2. PREVIOUS WORK

Previous work has concentrated on completing the definition of the concepts of data

diversity, developing preliminary performance models, and performing a pilot performance

study. In this section we review the fundamental concepts associated with the technique. More

details can be found in [1, 2].

2.1. Failure Regions

The input data for most programs comes from hyperspaces of high dimension. For

example, a program may read and process a set of twenty floating-point numbers, and so its input

space has twenty dimensions. In many cases the number of dimensions in the space varies

dynamically because the amount of data that a program processes varies for different executions.

-3-

The failure domain of a program is the set of input points that cause program failure [4].

We call a failure domain along with its geometry a failure region. A failure region describes the

distribution of points in the failure domain and determines the effectiveness of data diversity.

The fault tolerance of a system employing data diversity depends upon the ability of the

reexpression algorithm to produce data points that lie outside of a failure region, given an initial

data point that lies within a failure region. The program executes correctly on reexpressed data

points onIy if they lie outside a failure region. If the failure region has a small cross section in

some dimension(s), then reexpression should have a high probability of translating the data point

out of the failure region.

2.2. Data Reexpression

At its simplest, data reexpression is the generation of logically equivalent data sets. Figure

1 illustrates this basic form of data reexpression. An input x given directly to a program Program

produces an output Program (x). Alternatively, a reexpression algorithm Express transforms the

original input x to produce a new input y, where y = Express (x). The input y may contain exactly

the same information as the input x, but in a different form, ory may approximate the information

Execute

x 1 Program

-expression[____ Execute

= Express(xt _[Program
--------_Program (y)

Figure 1. Re-expression.

-4-

in inputx. The program Program operates on the reexpressed input y to produce Program (y).

Program and Express determine the relationship between Program (x) and Program(y). Data

diversity can tolerate faults when Program (y) is a useful output but Program (x) is not.

Figure 2 identifies two classes of reexpression algorithms. The first class produces elements

in the set I, i.e., elements that should produce Identical outputs, up to numerical error, when

processed by the program. These algorithms are termed exact. The second class yields elements

in the set V, i.e., elements that should produce Valid but not necessarily identical outputs when

processed by the program. These algorithms are termed approximate. Exact algorithms are

desirable from the viewpoint of error detection since they permit error detection by comparison of

outputs that should be the same. Approximate algorithms might be easier to produce, however,

and might have a better chance of a11owing the program to escape a failure region. Exact

reexpression algorithms might also have the defect of preserving precisely those aspects of the

data that cause failure.

Figure 2. Sets in the Output Space for Given Input x.

-5-

Asanexampleof an exact reexpression algorithm, consider a program that processes inputs

representing Cartesian coordinates and that only the points' relative positions are relevant to the

application. A valid reexpression algorithm could translate the coordinate system to a new origin

or rotate the coordinate system about an arbitrary point.

Any mapping of a program's data that preserves the information content of the data is a

valid reexpression algorithm. A simple approximate data reexpression algorithm for a floating-

point quantity might alter its value by a small percentage. The allowable percentage by which

the data value could be altered would be determined by the application. In applications that

process sensor data, for example, the accuracy of the data is often poor and deliberate small

changes are unlikely to affect performance.

The reexpression algorithms discussed above depend on numeric manipulation. It might

appear that many non-numeric applications are not candidates for fault tolerance through data

diversity because numeric reexpression cannot be used. The source program input to a compiler,

for example, is a character string, and any changes to that character string will almost certainly

change the meaning of the program.

Data can take other forms, however, and data diversity can be applied successfully to other

applications. Consider a compiler with a conventional multi-pass organization. Although the

initial representation of a source program is a character string, the program may be represented in

many ways during compilation, for example, as a tree. There are many transformations that can

be applied to a tree that preserve semantics. A compiler employing data diversity for its later

passes could be constructed by executing these later passes on several different copies of the tree

obtained by semantics preserving transformations.

Similarly, the order of storage allocation in an activation record is usually determined by

the programmer's order of declaration. In practice, this order need not be preserved, and a set of

-6-

semanticallyequivalentinternalrepresentationsof a programcanbeobtainedby shufflingthe

orderof variablesin activationrecords.

Combiningtreetransformations,datastoragereordering,andcodestoragereordering,i.e.,

generationof codefor subprogramsin anarbitraryorder,providesconsiderablediversityin the

dataprocessedbylargefractionsof aconventionalcompiler.Theseapproachesto reexpression

areexactin that,althoughthecodegeneratedby thecompilermaybedifferentandthereforenot

amenableto anysimpleselectionalgorithm,theeffectsof theseprogramsshouldbeidentical,

andsosimplevotingcanbeusedforselectionduringexecutionof theprogramsgeneratedbythe

compiler.

In general,areexpressionalgorithmmustbetailoredto theapplicationathand.Producing

a reexpressionalgorithmrequiresacarefulanalysisof thetypeandmagnitudeof reexpression

appropriatefor eachcandidatedatum.Simplerreexpressionalgorithmsaremoredesirablethan

complexonessincetheyarelesslikely tocontaindesignflaws.

2.3. Retry Blocks

A retry block is a modification of the recovery block structure that uses data diversity

instead of design diversity. The concept is illustrated in figure 3. Rather than the multiple

alternate algorithms used in a recovery block, a retry block uses only one algorithm. A retry

block's acceptance test has the same form and purpose as a recovery block's acceptance test. A

retry block executes the single algorithm normally and evaluates the acceptance test. If the

acceptance test passes, the retry block is complete. If the acceptance test fails, the algorithm

executes again after the data has been reexpressed. The system repeats this process until it

violates a deadline or produces a satisfactory output.

-7-

Reexpress
Data

o,tainExecuteNew Data Algorithm

Use Invoke [Output Backup

Figure 3: Retry Block.

2.4. N-Copy Programming

An N-copy system is similar to an N-version system but uses data diversity instead of

design diversity. The concept is illustrated in figure 4. N copies of a program execute in parallel;

•, each on a set of data produced by reexpression. The system selects the output to be used by an

enhanced voting scheme.

Voting in an N-copy system is not necessarily straightforward. If the reexpression

algorithm is exact, so that all copies should generate identical outputs, then a conventional

majority vote can be used. However, if the reexpression algorithm is approximate, the copies

could produce different but acceptable outputs. This is likely to occur near boundaries in the

output space. In that case, a simple majority may not exist and the selection process is more

involved. If a particular output occurs more than once, then it might be selected. If more than

one output occurs more than once or no output occurs more than once, then selection might have

to involve an arbitrary choice.

-8-

Copy1

Copy2

System ___ Reexpress CopyN DecisionInput Data Function
/

,ISynchronization Information .J

System
Output

Figure 4: N-Copy Programming.

REFERENCES

[1] P.E. Ammann, "Data Diversity: An Approach to Software Fault Tolerance Ph.D.

dissertation, Department of Computer Science, University of Virginia, February 1988.

[2] P.E. Ammann and J.C. Knight, "Data Diversity: An Approach to Software Fault Tolerance

IEEE Transactions on Computers, Vol. 37, No. 4, April 1988.

[3] A. Avizienis, "The N-Version Approach to Fault-Tolerant Software", IEEE Transactions

on Software Engineering, Vol. SE-11, No. 12, December 1985.

[4] F. Cristian, "Exception Handling", in Resilient Computing Systems, Volume 2, T.

Anderson, ed., John Wiley & Sons, New York, 1989.

[5] J. Gray, "Why do Computers Stop and What Can Be Done About It?", Tandem Technical

Report 85.7, June 1985.

-9-

[6]

[7]

[8]

M.A. Morris, "An Approach to the Design of Fault Tolerant Software", MSc Thesis,

Cranfield Institute of Technology, September, 1981.

B. Randell, "System Structure for Software Fault Tolerance", IEEE Transactions on

Software Engineering, Vol. SE-1, No. 2, June 1975.

"Tutorial: Software Testing and Validation Techniques", 2nd Ed., IEEE Computer Society

Press, 1981.

- 10-

APPENDIX A

On The Effectiveness Of Data Diversity

As An Error Detection Mechanism

ON THE EFFECTIVENESS OF DATA DIVERSITY

AS AN ERROR DETECTION MECHANISM t

John C. Knight

Department of Computer Science

Thornton Hail, University of Virginia

Charlottesville, Virginia, 22903

(804) 924-7605 FAX: (804) 982-2214

knight@virginia.edu

Paul E. Ammann

Department of Information Systems and Systems Engineering

George Mason University, Fairfax, VA 22030
(703) 764-4664 FAX: (703) 323-2630

pammann@ gmuvax2.gmu.edu

Steven J. Santos

Department of Computer Science

University of Virginia, Charlottesville, Virginia, 22903
(804) 924-7605 FAX: (804) 982-2214

sjs2g@ cs.virginia.edu

ABSTRACT

We have proposed previously an approach to software fault tolerance based on diversity in

the data space; a technique we term data diversity. In a fault-tolerant system employing data

diversity, the same software is executed on several set of points in the data space, each of which

should produce the same (or simply related) output. Error detection in data diversity is achieved

by observing unexpected differences between the outputs of the software on the different data

points. This approach to error detection can be employed in software testing as well as fault

tolerance, and an important question in both applications is the error detection performance of

data diversity. We report in this paper on a study in which several pieces of commercial

software were obtained and into which faults were injected. These faulty programs were tested

using data diversity for error detection. The results of this study show that data diversity can be

an effective error detection technique.

Subject Index:

Fault-tolerant software, software reliability, design diversity, data diversity.

tSponsored in part by NASA grant NAG_I-I 123-FDP.

1. INTRODUCTION

Error detection is the determination that the output of a software system is

unacceptable to its application, i.e., the software is not in compliance with its

specification. Clearly, error detection is a critical element of both software testing and

software fault tolerance. In software testing, for example, if a test input has been created

that causes a fault to manifest itself, this will be of little value unless the erroneous

software operation can be detected. Similarly, it is not possible to mask the effects of a

fault during execution, and thereby tolerate it, if the erroneous software operation is not

detected. In some systems, detection of errors during operation rather than fault masking

is the only goal [1].

Most existing approaches to software fault tolerance are based on the notion of

design diversity [2]. These approaches employ some form of software redundancy, and

depend for their operation upon differences in the various redundant designs. In the N-

version approach to software fault tolerance, for example, independent implementations

of the software are prepared [2, 3]. Although various error detection mechanisms are

employed in such systems, an unexpected difference in the outputs of these different

implementations is the primary mechanism for error detection.

In testing software systems, many different forms of error detection are used

including replication checks, reversal checks, timing checks, and acceptability checks.

The approach to error detection in which the output of a software system is desk checked

by a human is actually a replication check. Similarly, human examination of the output

to make sure that it "looks right" is actually an informal acceptability check. Many

checking techniques are actually applications of design diversity.

We have proposed previously an approach to software fault tolerance based on

diversity in the data space; a technique we term data diversity [4]. In contrast to systems

employing design diversity, a system employing data diversity executes the same

software on several different (but related) sets of points in the data space. If no fault

-AI-

manifests itself, each input data set should produce the same (or simply related) output,

and a decision algorithm is employed to determine system output. As with design

diversity, it is an unexpected difference in the outputs that signals an error in a data-

diverse system. Where there is such a difference, at least one of the executions of the

software must have involved the manifestation of a fault. Error detection is followed in a

fault-tolerant system by the selection of a suitable system output by a decision algorithm.

In direct analogy to the N-version [3] and recovery block [5] strategies of design

diversity, the decision algorithm in a data-diverse system uses a voter or an acceptance

test. Data diversity was shown to provide a useful degree of software fault tolerance in a

pilot study [6].

The fact that data diversity supports error detection is what permits its use in

software fault tolerance. However, this ability to detect errors suggests that data

diversity can be employed in software testing also. In practice, what is required in both

cases is for errors to be detected with probability one when they occur and with

probability zero otherwise. Not detecting an error when it occurs is potentially

catastrophic in a fault-tolerant system. Signalling an error when none has occurred is

also serious in a fault-tolerant system since this also could lead to failure. Not detecting

an error that occurs when testing is less serious. Provided the fault responsible for the

undetected error subsequently causes another error that is detected, the presence of the

fault will be revealed. At test time, the important thing is that the errors produced by a

given fault have non-zero probabilities of manifestation and of detection. The larger the

probabilities the better, but non-zero probabilities ensure that the probability of finding

the fault can be made as close to one as desired by increasing the number of tests.

During testing, false error signals lead to wasted human effort.

The performance of data diversity as an aid to testing and as a technique for fault

tolerance hinges on its error detection performance. As part of a long-term research

project on software dependability, we are assessing the performance of various aspects of

data diversity. In this paper we report on a study of its effectiveness in error detection.

-A2-

We have performed an experiment in which the ability of a data-diverse system to detect

the effects of injected faults was determined. In the next section, we describe the

concepts of data diversity and the mechanisms of error detection in more detail. In

section 3 we review the experiment that was performed and in section 4 we present the

results of the experiment. Section 5 contains our conclusions.

2. ERROR DETECTION AND DATA DIVERSITY

The idea of using data diversity as a technique for achieving software fault tolerance

was based on two observations. First, anecdotal evidence suggests that software tends to

fail on special input cases and unusual combinations of events, and second, in many

cases, software is a many-to-one mapping. Every programmer is familiar, for example,

with the situation in which a program fails because of the incorrect processing of

unexpected or obscure data cases. Similarly, programmers are aware that the exact order

of the data read by a program is frequently irrelevant.

The first observation leads to the idea that software would not fail because of a

specific special case if the special case were avoided, and the second observation

suggests that the special case might be avoided by using a different input data set.

Clearly, this different data has to be chosen so that an acceptable output is produced. A

fault-tolerant software structure called an N-copy system [6] that is designed to take

advantage of these ideas is shown in Figure 1.

The process of deriving input data sets that are equivalent to the original yet

different in some way is termed data reexpression. There are two forms of data

reexpression - exact and approximate. Exact data reexpression takes the supplied input

data set and produces an alternative input data set that will produce either the same

output as the original (perhaps up to the limits of numeric accuracy) or an output that is

simply related to the original. An example of exact reexpression for a sort function is a

random permutation of the input. Clearly the reexpressed input is different from the

original input yet should produce identical output. Another example of exact

. A3-

Input

__ 11Reexpression H

Reexpression H

Reexpressio---------_H

Copy 1

Copy 2

Copy N

Decision _ Output
Function

Figure 1 - N-Copy System Structure

reexpression for a sort function is to subtract each input data value from a value larger

than all the input data values. Again, the reexpressed input data set is different from the

original but the output will be different also. However, the output is simply related to the

original and the original output is easily recovered.

Approximate data reexpression produces an alternative input data set that will

produce an output acceptable to the application but possibly not the same nor simply

related to that produced by the original data set. An example is the introduction of a low

intensity noise term into the sensor values used by a control system. This should have

little or no impact on the application since sensor data is usually of limited accuracy.

However, the reexpressed data might avoid a failure arising from a special case in the

data, such as a division by zero resulting from the subtraction of two identical data

values.

- A4 -

Clearly, data reexpressionalgorithms are application-dependent.There is no

general rule that permits reexpressionalgorithms to be derived for all applications,

althoughthiscanbedonein somespecialcases(see[7], for example). Our experienceto

date is that data reexpressionalgorithms exist for a surprisingly wide range of

applications[8]. The efficacy of datareexpressionis an importantfactor in the success

of data diversity. It is data reexpressionthat yields the multiple data sets which

ultimately leadto theunexpecteddifferencein theoutputsandtherebyto errordetection.

In summary,error detectionusing datadiversity involves executionof the same

softwarewith different datasetswherethedifferentdatasetsshouldproduceidenticalor

related outputs. The different data setsare producedby deliberatemanipulation in a

processcalled reexpression.An error is signalled,andhencethemanifestationof afault

observed,if thereis anunexpecteddifferencein the outputsfrom the variousexecutions

of thesoftware. A potentially valuable benefit of detecting errors at test time in this way

is that it permits automation of error detection in much the same way as comparison

checking does [9, 10]. This facilitates automation of the whole test process. An

automated test system employing data diversity is shown in Figure 2.

3. EXPERIMENTAL ASSESSMENT

3.1. Overview

The overall goal of this study was to assess the error detection performance of data

diversity. Clearly, an analytic approach in which quantifiable characteristics of a

software system are used to predict error detection performance would be ideal.

However, such an approach is infeasible in general, and we resorted to an experimental

approach in which we measured the ability of data diversity to detect errors in sample

pro_ams containing known faults. Informally, the approach was to execute samples of

commercial software in an N-copy structure with input data taken from the appropriate

operational distribution.

-A5-

Reexpression

If

Generate
Test Reexpression
Input

Reexpression _

Copy 1

Copy 2

Copy N

k / n expecte

Figure 2 - Automated Test System Using Data Diversity

An experimental assessment of this type yields the most useful results when it is

based on production software with faults left undetected by the development process.

Statistically valid general results are obtained when large numbers of faults covering the

known spectrum of fault types can be studied. Unless a large number of programs with a

wide range of characteristics and a large number of faults of various types can be studied,

the observed behavior has little statistically predictive meaning. Merely observing the

performance of one or a small number of what would amount to randomly selected

programs with essentially random faults does not necessarily lead to any useful general

indication of the error detection performance of data diversity. Issues that would remain

include the relevance of the results to other faults and fault types, the applicability of the

results to software for different application areas, the effect of the skills of the

programmers involved and their backgrounds, the effect of the specific data reexpression

algorithm used, the effect of the software development environment, etc.

- At°

The size of the experimental study that the above implies is beyond our resources.

Also, unfortunately t the production software that was available for study contained no

known flaws. To mitigate the effect of the inevitable resource limitation and to obtain

more than anecdotal evidence of performance, we chose to perform an experiment in

which we constrained most of the independent variables in the experiment. That is, we

fixed most of the factors that could influence the results and varied one factor completely

and another somewhat. Thus our results are conditional on the values of the fixed factors

but complete for one variable and indicative for the other. Specifically, we focused on a

small number of samples of software written in C that were written by the same

programming organization and that come from the same application domain. The

domain used was geometric calculations associated with maritime navigation.

The study was performed in two phases. In the first phase, we explored the effects

of a set of different fault types using fault injection. This study was complete in that all

possible faults of certain types were generated and the resulting programs tested. The

goal was to acquire information about the performance of data diversity for all possible

instances of a set of fault types in a program. For example, each arithmetic operator in a

given test program was systematically changed to every other possible arithmetic

operator. This was repeated for all the arithmetic operators in the program and the

resulting series of programs containing injected faults, or mutants [11], were tested. The

same procedure was followed in phase one for all the relational operators and all the

logical operators in the available test programs. Since all the arithmetic, logical, and

relational operators were changed and each was changed into all possible alternative

operators, this phase of the experiment provides a general indication of the ability of data

diversity to detect faults characterized by the incorrect use of these operator types.

This kind of systematic fault injection can only be done for small test programs

since the resulting number of mutant programs is very large and grows rapidly with the

size of the initial test program. We generated all possible mutants in certain classes for

t Or fortunately, depending on your viewpoint.

- AT-

two small programs. Each mutant was executed with realistic inputs using data diversity

for error detection. Some of the mutants were benign, i.e., the change to the original

program did not cause a fault, and others did not fail on every test case. The original

software was used as an oracle to detect the cases where an error occurred, and hence

when data diversity should have detected the error.

In the second phase of the study, we sought information on the effect of program

size. The central question was whether the performance observed in the first phase was

likely to scale up to larger programs. Again, resources were limited and only a single

larger program was studied. For that program, we generated a random sample of the

mutants since generating and testing all possible mutants was infeasible.

In both phases of the study each mutant was tested many times but the entire test

process itself was also repeated many times. This was to obtain some indication of the

variance in the observed performance. Testing a mutant with a single set of test cases

reveals a certain performance level but this observation is a random sample subject to

statistical variance. Repeating the test process many times with different test data each

time gave insight into this variance which proved to be quite wide.

3.2. Subject Programs

The programs used in this study were supplied by Sperry Marine, Inc., of

Charlottesville, Va. Sperry Marine manufactures computerized maritime electronic

systems. The two programs used in the first phase of the study compute heading and

distance from a ship's present position to its desired destination. Both present position

and desired destination are supplied as latitude/longitude pairs. The outputs are the

heading that must be steered and the distance to the destination in nautical miles. The

first of the two test programs computes the great-circle course and the second computes

the rhumb-line course. The great-circle course is that which minimizes the distance

traveled between two points. Following a great-circle route requires constant adjustment

of the heading. The rhumb-line course is the course that maintains a constant heading.

- A8 -

Although the traveled distanceis longer, the ability to steer a fixed heading is a

considerablebenefit.

The secondphaseof thestudyuseda programthatcomputesthe orbital positionof

a satellite in the Global Positioning Satellite System (GPSS). The GPSSis used in

navigationsystemsto determinethe locationof anobserver. Theorbital position that is

computedis the locationof the satelliteat somespecifiedtime in a Euclideanframe of

referencebasedon the center of the Earth. The computationsare basedon orbital

parameterinformation for a particularreferencetime that includesthe inclinationof the

orbit abovetheequatorialplane,theorientationof the orbit relativeto the zeromeridian,

and a large number of data elementsused in correcting anomaliesto increasethe

accuracyof thefinal positionestimate.

3.3. Reexpression Algorithms

In phaseone,threereexpressionalgorithmswereused. The first dependsuponthe

fact that the output of the two programswas a courseheadingand distancewith no

dependenceon the actual values of latitude and longitude that were input. The

reexpressionalgorithmrotatedtheinput points aroundtheEarth by anarbitraryamount.

Essentiallythis amountsto changingthe longitude but fixing the latitude. Clearly, this

shouldhavenoeffecton theoutputandsothis is anexactreexpressionalgorithm.

The second reexpression algorithm was approximate. The supplied

latitude/longitudepairs were modified by adding a small random offset to each. The

resulting courses and headingsproduced should be very similar, and this required

similarity wasusedastheerrorindicator.

The third reexpressionalgorithm was also approximate. It took the supplied

latitude/qongitudepairsandgeneratedinputsthat shouldproducealmostidenticaloutputs

by shifting each location by one degreelatitude East and one degree latitude West.

Thesereexpressedlocationsalong with theoriginal dataproducea total of six different

- A9-

requiredcourses,each of which shouldhave very similar headingsand distances. By

arrangingthe datasetsin anappropriateway, the outputwas forced to beorderedand

this requiredorderingwasusedastheerrorindicator.

In the secondphaseof the experiment,four reexpressionalgorithmswere used.

Threeof the four wereexactand one wasapproximate. In the first exact reexpression

algorithm the inclination of the satellite'sorbit with respectto the equatorialplane (an

input) wasreversed. The effect of this reexpressionon the output shouldbe to reverse

the signof theoutput z coordinate. The second and third reexpressions were similar but

involved the orientation of the orbit to the zero meridian (another input). Finally, the

approximate reexpression algorithm perturbed the inclination of the orbit and its

orientation to the zero meridian by a small random amount. The effects of these changes

on the individual Euclidean coordinates are complex but the distance of the satellite from

the center of the Earth should be virtually unchanged. An unexpected change in this

distance was used as the error indicator.

3.4. Experimental Procedure

In the first phase of the study, each of the arithmetic operators (+,-, x, /), the

relational operators (<, <, =, >, >, _), and the logical operators (and, or) were changed

into every each other operator in the set. Thus a single + operator generated three

mutants with the + operator replaced by -, x, and / respectively. Some of the resulting

mutants failed to compile and were discarded.

In the second phase of the study, operators were selected at random for mutation

and the change made was selected at random from the available changes. The total

number of mutants generated this way is a very small fraction of the possible mutants for

the program. For each of the test programs used in the study the numbers of each type of

mutant that survived compilation are shown in Table 1. Table 1 also shows the size of

each test program in lines where lines are non-comment source lines of code.

-A10-

Program 1 Program 2 Program 3

Lines 34 38 977

Arithmetic 48 45 5 (Fixed)

Relational 25 40 5 (Fixed)

Logical 1 3 0

Table 1 - Numbers Of Mutants and Program Sizes

The error detection performance of data diversity was determined for each mutant.

This was done by executing the mutant with test data in an N-copy software structure and

comparing its error detection performance with that of the original program acting as an

oracle. This process was repeated for each available reexpression algorithm. In phase

one, the exact reexpression algorithm (rotation about the Earth) was parameterized by the

amount of rotation. The resulting N-copy system was executed with N equal to 32, i.e.,

the mutant was executed separately with the original data rotated by each of 32 different

amounts. Error detection then amounted to checking for any unexpected difference in

the 32 different output which should have all been the same.

The general form of the test harness used to evaluate the mutant programs is shown

in Figure 3. The purpose of the comparators in the test harness is to determine whether

there was any error to detect and to identify false alarms. Although the mutants

contained faults, it is not necessarily the case that the fault would manifest itself on each

test. Similarly, an error detected by the N-copy system did not mean there was an error.

For each mutant, a set of 100 test cases was executed by the N-copy system and the

oracle, and the error detection performance measured by comparing the number of times

the N-copy system detected an error to the number of times the oracle detected an error.

Finally, this whole process was then repeated 200 times in order to get some information

about how the data diverse system's error detection performance varied. During the

-All -

Generate
Test

Input

,.. _ Original

_r

Reexpression

Mutant

Mutant

Comparator
A

Error

Detector

Comparator

DataRecorder

I t
Original

Reset DataRecorder

B

N

Quit

Figure 3 - Evaluation Test Harness

execution of these 200 replicates, the best, worse, and average detection rates for the

data-diverse error detector were determined.

4. EXPERIMENTAL RESULTS

4.1. Phase One - Maritime Course Computation

Too many mutants were generated and tested in phase one to permit the results for

each mutant to be included in this paper. We have selected from the phase one results

-AI2-

the data for those mutants with the best and the worse error detection performance for

each reexpression algorithm. We define best and worst here to be the highest and lowest

average detection rate, averaged over all 200 replicates. For the first reexpression

algorithm, the best and the worst were the same since this reexpression algorithm

performed similarly on each replicate. Tables 2 and 3 show the results of testing the

arithmetic mutants, and Tables 4 and 5 show the results of testing the relational mutants.

In each of these tables, entries expressed as ratios show the number of test cases in which

the N-copy system detected an error over the number of test cases in which an error

occurred. Thus, for example, in Table 2 the maximum data for reexpression algorithm 2

and mutant 11 (center of the table) is 28/40 meaning that of all the replicates that were

run, the best detection rate observed for that mutant and reexpression algorithm was 28

detected out of 40 that occurred. Recall that in each replicate 100 tests were run and so

the mutant actually failed on 40 out of the 100 tests. A table entry of "NA" means that

Mutant 2
(- _+)

Mutant 10

(x-_-)

Mutant 11
(x-_+)

Mutant 13
(--_+)

Mutant 15
(--_x)

Maximum
Minimum

Average

Maximum
Minimum
Average

Maximum
Minimum
Average

Maximum
Minimum

Average

Maxim um
Minimum

Average

Reexpression
Algorithm I

4O/40
40/40
1.000

40/40
40/40
1.000

40/40
40/40
1.000

40/40
40/40
1.000

40/40
39/40
0.999

Reexpression
Algorithm 2

6/40
0/40
0.046

38/40
20/40
0.762

28/40
11/40
0.472

28/40
11/40
0.465

14/40
1/40

0.183

Reexpression
Algorithm 3

40/40
38/40
0.993

40/40
37/40
0.995

4O/40
37/40
0.995

40/40
37/40
0.994

19/40
4/40
0.226

Table 2 - Great Circle Computation, Arithmetic Mutants

-A13 -

Reexpression Reexpression Reexpression
Algorithm I Algorithm 2 Algorithm 3

Maximum 48/48 13/13 1/10
Mutant 1 Minimum 48/48 6/10 0/17

(- 4 x) Average 1.000 0.876 0.003

Maximum 48/48 2/7 4/18
Mutant 2 Minimum 48/48 0/13 0/5

(- 4 +) Average 1.000 0.054 0.034

Maximum 100/100 28/99 100/100
Mutant 5 Minimum 100/100 0/17 88/100

(+ 4-4 x) Average 1.000 0.183 0.941

Maximum 62/62 3/3 1/11
Mutant 19 Minimum 62/62 3/6 0/9

(- 4 +) Average 1.000 0.893 0.002

Maximum 100/100 80/100 100/100
Mutant 36 Minimum 100/100 54/100 97/100

(/4 x) Average 1.000 0.696 0.997

Table 3 - Rhumb Line Computation, Arithmetic Mutants

Mutant 21

(< 4 >)

Mutant 22

(<4=)

Mutant 24

(<4>)

Mutant 25

(< -->_)

Maximum
Minimum

Average

Maximum
Minimum

Average

Maximum
Minimum

Average

Maximum
Minimum

Average

Reexpression
Algorithm 1

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

Reexpression
Algorithm 2

5/40
O/40

0.047

4/18
0/21
0.042

..... 5/46
0/40

0.047

4/19
0/19

0.044

Reexpression
Algorithm 3

6/40
0/40

0.036

3/17
0/22
0.039

6/40
0/40

0.036

5/23
0/19

0.039

Table 4 - Great Circle Computation, Relational Mutants

-A14-

Reexpression Reexpression Reexpression
Algorithm 1 Algorithm 2 Algorithm 3

Maximum 20/20 3/3 NA
Mutant 2 Minimum 20/20 0/1 NA
(= _ >) Average 1.000 0.438 NA

Maximum 40/40 35/40 1/40
Mutant 4 Minimum 35/40 19/40 0/40
(= _ _>) Average 0.973 0.688 0.0004

Mutant 16

(> _ <)

Mutant 18

(< _ =)

Mutant 39

(< --> >)

Maximum
Minimum

Average

Maximum
Minimum

Average

Maximum
Minimum

Average

NA
NA
NA

NA
NA

NA

40/40
35/40
0.973

8/39
0/40

0.085

5/16

0/17
0.089

30/35
12/29
0.655

4/40
0/40

0.019

2/13
0/21

0.021

1/32
0/37
0.001

Table 5 - Rhumb Line Computation, Relational Mutants

for the data produced by that reexpression algorithm, the particular mutant never failed.

The mutations used to produce the mutant programs are shown in each table in the

leftmost column beneath the mutant number.

Only a single logical operator was present in each of the great circle and rhumb line

programs, and the single mutant generated from each did not fail in any of the tests

executed.

False alarms, i.e., signaling an error when none was present, occurred very rarely,

and the rate was directly determined by the tolerance used in the comparison. Inevitable

differences in numeric results sometimes triggered false alarms because the differences

were somewhat larger than expected yet still acceptable.

The results of phase one suggest that error detection by data diversity was very

effective for arithmetic mutants (Tables 2 and 3). There were considerable differences

-A15-

between the reexpression algorithms, and, in some cases, differences between the

mutants for a given reexpression algorithm. The detection of errors caused by faults in

relational operators (Tables 4 and 5) was less effective but the average over all replicates

was still nonzero indicating that the fault would eventually be detected, at least during

testing. Again there was considerable difference between the reexpression algorithms.

4.2. Phase Two - GPSS Orbit Computation

In phase two, a total of five arithmetic mutants and five relational mutants were

generated that survived compilation. There were no logical operators in the program.

The results of the testing of the arithmetic mutants is shown in Table 6.

Reexpression Reexpression Reexpression Reexpression
Algorithm I Algorithm 2 Algorithm 3 Algorithm 4

Maximum 100/100 0/100 100/1])0 4/100
Mutant 1 Minimum 98/100 0/100 100/100 0/100
(+ ---)x) Average 0.996 0.000 1.000 0.017

Maximum 100/100 0/100 100/100 4/100
Mutant 2 Minimum 99/100 0/100 100/100 0/100
(/--) ×) Average 0.994 0.000 1.000 0.020

Maximum 100/100 100/100 100/100 32/100
Mutant 3 Minimum 97/100 100/100 100/100 19/100
(× --->/) Average 0.990 1.000 1.000 0.259

Maximum 35/35 0/43 38/38 2/46
Mutant 4 Minimum 28/29 0/43 38/38 0/43
(× ---)/) Average 0.986 0.000 1.000 0.0094

Maximum 100/100 0/100 100/100 3/100
Mutant 5 Minimum 99/100 0/100 100/100 0/100
(× --_ +) Average 0.997 0.000 1.000 0.0140

Table 6 - GPSS Computation, Arithmetic Mutants

- A16 -

Each mutant that was generated by changing a relational operator either failed on

every test case that was run or did not fail at all. For those that failed on every test case,

none of the failures was detected by the N-copy structure. Investigation of this situation

revealed that these mutants were generating output that was wildly incorrect and doing so

no matter how the data was reexpressed. The test harness was modified to include a

simple acceptability check, i.e., that the satellite was actually above the surface of the

Earth, and this acceptability test failed on every occasion. Thus although the N-copy

system was defeated, the software had failed so badly that a trivial additional check

detected all of the errors.

The error detection performance observed on the larger program used in phase two

was similar to that observed during phase one. The arithmetic mutations caused errors

that stood a high chance of being detected but there were considerable differences

between reexpression algorithms. The performance on relational mutations, i.e., no

detection of programs failing every test case, was surprising and suggests that data

diversity might be more useful in detecting errors caused by more obscure faults.

Combining data diversity with other error detection techniques, such as the

reasonableness check that we used, seems to be a fruitful approach.

5. CONCLUSIONS

We conclude from this study that data diversity has considerable potential for error

detection but it is quite variable in its performance. This is confirmation of the same

conclusion reached in the pilot study [6]. In the present study, however, we see that the

variation occurs across different fault classes and across reexpression algorithms. The

fact that for many mutants the N-copy systems were able to detect the errors generated

with very high probability is encouraging.

The variation in performance can be reduced if more than one reexpression

algorithm is used, and by using multiple instantiations of the same reexpression

algorithm if it is parameterized. It also appears to be beneficial to combine the method

-A17-

with other error detection methods. Selection of methods that can be easily automated,

such as reasonableness checks, is particularly appropriate. The combined error detection

performance of a set of methods would be a profitable area to study.

It is important to note the conclusions we have reached is based on a very small-

scale study with many experimental variables deliberately fixed. We cannot extrapolate

our results to other application domains or in any other way. General results about the

performance of data diversity await further experimentation by ourselves and others.

6. ACKNOWLEDGEMENTS

It is a pleasure to thank Sperry Marine, Inc. of Charlottesville, VA. for permitting us

to use samples of their software for this evaluation. John Yancey provided us with

substantial technical assistance in understanding the algorithms used. This work was

sponsored in part by NASA grant NAG_l-1123-FDP;

-A18-

REFERENCES

[1]. D.J. Martin, "Dissimilar Software In High Integrity Applications In Flight Controls",
Software for Avionics, AGARD Conference Proceedings, No. 330, pp. 36-1 to 36-9,
January 1983.

[2] A. Avizienis, "The N-Version Approach To Fault-Tolerant Software' ', IEEE Transactions
on Software Engineering, Vol. SE- 11, No. 12, December 1985.

[3] L. Chen and A. Avizienis, "N-Version Programming: A Fault-Tolerance Approach To
Reliability Of Software Operation", Digest FTCS-8: Eighth International Symposium on

Fault Tolerant Computing, Tolouse, France, June, 1978, pp. 3-9.

[4] P.E. Ammann and J.C. Knight, "Data Diversity: An Approach To Software Fault
Tolerance", Digest FTCS-17: Seventeenth International Symposium on Fault Tolerant
Computing, Pittsburgh, PA, July, 1987, pp. 122-126.

[5] B. Randell, "System Structure For Software Fault Tolerance", 1EEE Transactions on
Software Engineering, Vol. SE-1, No. 2, June 1975.

[6] P.E. Ammann and J.C. Knight, "Data Diversity: An Approach To Software Fault
Tolerance' ', IEEE Transactions On Computers, Vol. 37, No. 4, April, 1988.

[7] P.E. Ammann, D.L. Lukes, and J.C. Knight "Applying Data Diversity To Differential
Equation Solvers", submitted to FTCS-21: Twenty First International Symposium on
Fault Tolerant Computing, Montreal, Canada, June, 1991.

[8] P.E. Ammann and J.C. Knight "Data Reexpression Techniques For Fault-Tolerant
Systems", Technical Report Number TR90-32, Department of Computer Science,
University of Virginia, November, 1990.

[9] S.S. Brilliant, J.C. Knight, and P.E. Ammann, "On The Performance Of Software Testing
Using Multiple Versions", Digest FTCS-20: Twentieth International Symposium on Fault
Tolerant Computing, Newcastle Upon Tyne, UK, June, 1990.

[10] F. Saglietti and W. Ehrenberger, "Software Diversity - Some Considerations About Its
Benefits And Its Limitations", Digest of Papers: SAFECOMP '86, 5th International
Workshop on Achieving Safe Real-Time Computer Systems, France, October, 1986.

[11] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, "Theoretical And Empirical

Studies On Using Program Mutation To Test The Functional Correctness Of Programs",
Proceedings of the Seventh Conference on Principles of Programming Languages,
January, 1980.

-A19-

APPENDIX B

Applying Data Diversity

To Differential Equation Solvers

Applying Data Diversity To Differential Equation Solvers t

Paul E. Ammann

Department of Information Systems and Systems Engineering
George Mason University

Fairfax, VA 22030
(703) 764-4664 FAX: (703) 323-2630

pammann@gmuvax2.gmu.edu

Dahlard L. Lukes

Department of Applied Mathematics
University of Virginia

Charlottesville, VA 22903

dll@virginia.edu

John C. Knight
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

(804) 924-7605 FAX: (804) 982-2214
knight@virginia.edu

ABSTRACT

The control laws for some critical systems are expressed as sets of differential equations. The task
of the software is to implement a solution to the control laws. Even though automated aids are
heavily used in such implementations, there is no guarantee as to the correctness or reliability of
the resulting software. This paper explores a first step in the use of data redundancy to tolerate
design faults in differential equation solvers. We distinguish two cases. In the first case, we are
interested primarily in the applicability of data redundancy to a wide class of differential equa-
tions. In the second case, we are interested in circumstances under which it is reasonable to use

an independence model to build highly reliable solvers from moderately reliable components.
The paper indicates general tradeoffs and assumptions that underlie this application of the tech-
nique and provides data from a pilot study.

Keywords: Data Diversity, Data Redundancy, Design Redundancy, Software Fault Tolerance,
Software Reliability.

t This work supported in part by NASA grant NAG_1-1123-FDP and NSF grant CCR-9010036.

1. INTRODUCTION

Critical software-based systems continue to be proposed and built. Common examples

include medical life support and monitoring equipment, avionics and spacecraft control software,

and nuclear power plant shutdown control software. Often these systems implement various con-

trol laws expressed as differential equations, and so we must be concerned with the reliability of

these implementations.* In this paper we first combine the fault tolerance technique of data redun-

dancy [1, 2, 3, 4] (also called data diversity) with the rich theory of differential equations to

develop general approaches for tolerating design faults in differential equation solvers. We then

elaborate additional conditions under which it is justifiable to use independence assumptions to

achieve very high reliability levels for such systems.

The most widely studied fault tolerance techniques are based on design redundancy, exam-

ples of which are N-version programming [i 1] and recovery blocks [27]. In N-version program-

ming, a vote on intermediate and/or final results of the redundant implementations is used to

determine system output. In a recovery block, an acceptance test on intermediate and/or final

values is used to evaluate the results of successive alternate implementations. In addition to being

used for fault tolerance, the design redundant structures are also used via comparison checking or

back-to-back testing [7, 10, 28, 30] for software fault removal. Design redundant systems suffer

from a variety of difficulties [8, 9, 13, 17, 18]; see [15] for a thorough review. The most serious of

these problems is modeling the effect of component failure on the failure characteristics of the

entire system; the basic difficulty is that the models from the analogous hardware systems simply

do not apply [13]. We return to the issue of modeling in section 2.

An alternate approach to the detection and tolerance of software faults, and the approach that

is the topic of this paper, is data redundancy. The difference between design and data redundancy

can be summarized as follows: design redundancy employs related designs on the same input;

data redundancy employs the same design on related inputs. Data redundant systems are econom-

ically attractive and potentially very effective [2].

The basic framework for data redundancy is as follows: In a data redundant system, only

t Ccmcern about correct operation is not limited to reliability; see, for example, [19].

-B1-

 ystem Copylk, System
17/ copy2 Ou utl

Re'Express_ / _l c',_,{,,_ I

Data _ ...,.v:.. I .-] Voter

' 4_ 'Synchronization Information' .]

Fig. 1: N-Copy Programming.

one implementation of a program is developed from the specification, t A given input, x, is used to

derive N alternate inputs, x l, x2 XN, that satisfy some application dependent equivalence

property. The program, P, is run on the alternate inputs, xi, to produce P(xl), P(x2) P(XN).

A decision algorithm is employed to evaluate the (possibly different) outputs, P(xi). The manner

in which alternate inputs are derived is the fundamental determinant of the success of data redun-

dancy.

Data redundant program structures parallel the design redundant structures. N-Copy Pro-

gramming is based on N-Version programming, except that the vote is used to select from the out-

puts produced by the execution of the same implementation on a set of alternate inputs. The retry

block is based on the recovery block, except that when the acceptance test fails, the same imple-

mentation is retried with an alternate input. Fig. 1 illustrates the semantics of N-Copy program-

ming; fig. 2 illustrates the semantics of the retry block.

In this paper, we discuss the application of data redundancy to differential equation solvers.

In section 2, we address the modeling problem: we outline the requirements on data redundant

systems such that the one is able to meaningfully predict the reliability of a system based on the

reliability of the system's components. In section 3, we discuss, first by way of example and then

with a general theory, the way in which data redundancy can be applied to differential equation

"t"We adopt the following simple lint general model to focus the presentation: During testing or during operation, the progrm'n in question,

denoted P, executes on a specific input, x, to produce an outpuL P(x).

- B2-

System _[Execute __JRe-express]

Input -[Algorithm- [Data]

System_Invoke

Output- _-_ -Backup

Fig. 2: Retry Block.

solvers. In section 4, we join sections 2 and 3 by recasting the example of section 3 so that the

reliability of the solver can be probabilistically guaranteed. In section 5, we give results from a

pilot study that illustrates the behavior of the example. Section 6 contains conclusions.

2. THE MODELING PROBLEM

In hardware systems, it is well understood how to construct systems of high reliability from

components of moderate reliability [29]. For example, in N-Modular Redundant (NMR) hardware

systems, N replicates of a hardware module are supplied so that the failures of some subset can be

tolerated. Similarly, in standby sparing systems, replicates of a component can take over in the

event that the primary component fails. The key factor for the success of structures such as NMR

and standby sparing is that it is reasonable to model component failures as independent events; the

probability that two components fail simultaneously is assumed to be the product of the individual

failure probabilities. It is indeed fortunate that hardware models can take advantage of the

independence assumption; if the assumption did not apply, actual hardware reliability would be

substantially lower.

N-version programming parallels the hardware NMR structure. Similarly, the recovery block

parallels the hardware standby sparing model. Unfortunately, as has been shown empirically [18],

the independence model is not appropriate for N-version programming or the recovery block. The

difficulty is that the probability of failure for a randomly chosen software component is a function

. B3 -

of the input beingprocessed;someinputsaresimply morelikely to triggerdesignfaults thanoth-

ers. Models which takeaccountof this dependence,suchasthe multi-version model developed

by EckhardtandLee [13], generally(althoughnot always)predict substantiallylower reliabilities.

Worse,suchmodelsyield averageresultsthat areparameterizedby anunknownfailure intensity

distribution. In general,thesemodelsarenotusefulfor predictingthepropertiesof a specificsys-

tem.

In [2] it wasshownthattheEckhardtandLee modelcould beadaptedto describetheperfor-

manceof dataredundancyin generalapplications.Thus,in theabsenceof additionalinformation,

the independencemodelis not appropriate for general data redundancy applications. In [2], it was

further shown that the program structure employed, either a retry block or an N-Copy system, was

much less important to the performance of data redundancy than the ability of the re-expression

algorithm to exit the failure region.

However, we now tum to a basic point of this paper: it is possible, for certain applications,

to employ data redundancy in such a way that it is reasonable to apply an independence model. In

such cases, it is possible to take software components of modest reliability and construct a system

of substantially higher reliability. Below we enumerate methods by which one can justify the use

of an independence model. We highlight the assumptions underlying these methods. It is impor-

tant to recognize that we are not supplying a panacea for the problem of software reliability; our

claim is only that, with care, the independence model can reasonably be applied to tolerate design

fault in an important set of applications. This paper considers the independence model in the dif-

ferential equations domain; other researchers have applied random algorithms in various other

areas [5, 20].

2.1. Data Redundancy And The Independence Model

How is the independence model made applicable? Suppose that we are given a usage distri-

bution over the domain of interest. _ Through life testing [23, 26], it is possible to bound the failure

probability due to a design fault on a randomly chosen input. That is, if an input is randomly

selected from the domain according to the usage distribution, then, with confidence C, we can be

-t For the following analysis, it is not necessary that the postulated usage distribution precisely match the actual usage distribution. However,

as will become apparent in Seclion 5, selecting inputs from a significandy different distribution does affect performance.

-B4-

surethat the probability of failure doesnot exceedsomefixed value, say p. Random selection

yields the independence property; the probability that two randomly selected inputs will simul-

taneously cause failure is p 2.

It may not appear that we have made much progress. Although it is true that by randomly

selecting inputs we can be sure that the different invocations of the software are failing indepen-

dently, we must be able to use the outputs produced by the randomly selected inputs. After all, if

we are given an input x, we are required to produce the program output P(x), not P(y), for some

random y. However, in certain cases, it turns out that we can use additional information to relate a

random input, y, back to the original input, x. Below we outline two methods for achieving this

goal. _ Both techniques are applicable to the differential equations arena.

Single Input Method

One basic method is to select random parameters that map x to a single arbitrary y in the

domain, and then use those same parameters to map P(y) back to P(x). Ifx is a vector instead of

a scalar, it is important that the parameters represent a sufficiently rich transformation. For exam-

ple, if x is a point in R 3 then the transformation needs to able to map x to some three dimensional

subregion of R 3. Clearly, a two parameter transformation is insufficient to guarantee the

equivalent of random selection in R 3.

Multiple Input Method

Another basic method is to choose a random input y 0 independently of the given input x, and

then choose a set of other inputs, Yl, Y2 , YN. The criterion for selection of the Yi is that the

multiple outputs P(Yi) can be combined in such a way that, in the absence of failure, there is a

direct relation to the output P(x). Le., we need a function f (), such that, in the absence of

failures, f(P(Yo), P(Yl) P(YN)) = P(x). This powerful technique has been explored by Lipton

[20] for polynomials and by Ammann and Knight [3, 4] for simple trigonometric functions. We

review these applications below.

t We note that [5] exploits this idea in a slighdy different manner in the design of program checkers.

-BS-

Identity Function

The first examplewe give for thesingle input methodis very simple, andis of explanatory

valueonly. The exampleappearsin [20]. Supposethat we wish to reliably computetheidentity

function, f (x) = x, and that all that we have available is a (possibly) faulty implementation, P,

with the property that P(x) actually differs from x with probability p on randomly chosen x. If we

compute P(x+r) for randomly chosen r, we can be sure that the probability that P will fail on both

input x and input x+r is p 2. Note that, with probability l-p, we can recover f (x) from P (x +r) by

subtracting r.

Polynomials

We now address a more substantive example. A comprehensive treatment of this example

may be found in [20]. Suppose that we wish to multiply pairs of numbers more reliably than we

are assured for a given implementation of multiplication. Such an application might arise, for

example, in cryptography, where it is necessary to perform modulo arithmetic on numbers with

hundreds of digits. Consider the computation A x B. Select two random values, X1 and Y1 and

compute X2 =A-X1 and Y2 =A-Y1. We may rewrite the product A xB as

X1 x Y1 +X1 x Y2 +X2 x Y1 +X2 x Y2. Note that we have rewritten the product of A and B as

the sum of four other products. Due to independent selection, we may be sure that failure on each

of the four resultant multiplications is independent of failure on the multiplication of A and B. In

his analysis in [20], Lipton shows that the independence property can be maintained when the

transition is made from algebra to typical machine representations. In addition, Lipton extends

the example to demonstrate reliable computation of polynomials.

Sine Function

Our final example is repeated from [3]. It is a data redundant computation of the sine func-

tion. Assume we have an implementation of the sine function that is known to work over a large

percentage of it inputs; the failure probability for the sine function on a randomly chosen input, x,

is p, where p < < 1. To compute sin(x), we use the two trigonometric identities

sin(a +b) = sin(a)cos(b) + cos(a)sin(b)

cos(a) = sin(r_/2-a)

-B6-

to rewrite

sin(x) = sin(a)sin(x/2-b) + sin(r_/2-a)sin(b)

in which a and b are any two real numbers such that a+b = x. Suppose that sin(x) is computed

using three independent decompositions for x obtained by using three different values each for a

and b, and that a simple majority voter selects the output. Using the worst case assumption that

all incorrect answers appear identical to the voter, a conservative estimate for the probability of

computing an incorrect value for sin(x) is on the order of 48p 2.

Series Expansions

If we are content to describe a function with a series expansion over either polynomials or

sines and cosines, we can use the techniques above to calculate arbitrary functions with very high

reliability given components of moderate reliability and assumptions about the correctness of the

basic arithmetic operations.

3. APPLYING DATA REDUNDANCY TO DIFFERENTIAL EQUATIONS

In this section, we wish to elaborate the general ways in which the underlying theory of dif-

ferential equations may be exploited in data redundant implementations of differential equation

solvers. We begin with a simple example of a harmonic oscillator, and then proceed to more gen-

eral theory based on Lie symmetries. In this section, we concentrate exclusively on the differen-

tial equations; in the next section we tie the results reported below to the independence property

described in the previous section.

3.1. An Example

lOll]ix] 1- , x(0) -- x0 -- ix20
dt [x2 0 2

We wish to compute x (T).

We wish to exploit the symmetry of the given o.d.e, by letting the group G = R2xR + act on

the data to be fed into the o.d.e, solver used to provide the computed value. The ultimate objec-

tive is to improve the reliability of the accepted computed value.

-B7.

The groupG will be tied into the ode solver which when passed parameter values [o_,13,y]

G will be referred to as the [tx, 13,7]-solver. This will be done in such a fashion that, corresponding

to the group identity [0,0,1] _ G, the [0,0,1J-solver is the solver for the above given harmonic

oscillator. The main objective is to produce multiple evaluations for x (T), each obtained by a

(small) finite number of calls to the [0,0,1]-solver and any [tx,13,y]-solver on appropriate argu-

ments.

Consider the initial-value problem

d Iyl] [_ o_ 13+1][2yl] , y(0)=y0 = I_l °]d_ : =Y 13-1 o_ 2 2o

Denote its solution value at c as P [tx,13,y](_,y °) which we identify with the value returned by an

exact [ct, 13,y]-solver.

Proposition For each [tx, 13,7] _ R =xR + and _ a R,

e [0,0,1]("/_,P [tx,13,y](-a,P [0,0,1](T,P [0,0,1](-'y_,P [e_,13,7](a,x0))))) = x (T),

for every e_,13,y and t_. If all return the approximate same value of x (T) then we have increased

confidence that P [0,0,1] is working for t0 = 0 , x0on0 < t < T.

It is easy to show that the [ct,13,y]-solver can move any initial-data point in the (t, x)-space

to any other as long as x is not zero.

3.2. General Theory

Assume that the equations have been cast into the first order system form of the the initial-

value problem

;c = f (t, x) , X(to) = Xo

where x is a n-vector state variable in R n and, for simplicity, assume that fis a smooth function of

its argument in RxR n. The classical theory of differential equations ensures the existence of a

unique solution x = qf(t, to, Xo) satisfying the differential equation and the initial condition that

rlf(to, to, x0) = x0. (The domain and properties of this general solution rl I are discussed in

[21].) For each choice of input data (to, x0) a good differential equation solver implemented

correctly provides a discrete approximation to the resultant trajectory (t, x(t)) in RxR n with

. B8.

x(t) = rlf(t, to, x0).

The idea of data redundancy discussed earlier in this paper leads to questions of the Lie

theory type concerning symmetries of differential equations. This is best explained in terms of the

diagram of fig.3. (Also see fig.Z)

Extending the notation - scheme of Example 3.1, we call the implementation of a numerical

integration algorithm applied to a differential equation given by f a [f]-solver. Hence, if all is

working well, if the [/]-solver is given input data (to, x0) it produces the numerical approximation

to the trajectory (t, rl(t, to, x0)) on the interval to <t <tl and in particular computes (tl, Xl)

where xl = rlf(tl, to, x0).

The basic data re-expression question raised is: Can this numerical solution be obtained by

feeding the [f]-solver some other input data (To, 2'0)? Motivation for the question might arise

from some doubt about the validity of the result returned by the [f]-solver in response to the origi-

nal input (to, x0). Once obtained, (To, 2"0) would be used to run the [f]-solver a second time to

get 0"1,2"1) and the results would then be transformed back to provide the solution to the original

problem. As did Sophus Lie, who used another ordinary differential equation to transform the ori-

ginal problem but for the purpose of finding a change of coordinates that would reduce the dimen-

sion of the original equation as a step in finding the general solution to the original equation (see

[/]-solver _ fra, 2x)

$

I [[-g]-solver

[/]-solver _ (t 1, Xl)

fro, 2"0)

[gl-solver [

(to, x0)

Fig. 3: Data Re-Expression Via Lie Symmetries.

- B9.

[6, 25]), we chooseto transformtheinitial databy meansof anotherdifferential equation. The

equation dzm = g (z), this time is autonomous, i.e., independent of c with z a variable in R n+l.
do

The invariance requirement, which is that with Ct"o, _o) = rig(_, O, to, xo), (t, rlf(t, T o, "Xo))

transform back via rlg(-o, 0, •, .) to give the solution (t, fir(t, to, x0)) to the original problem

then is equivalent to the statement that the diagram in fig. 3 be commutative. Due to space limita-

tions we omit details but it can be shown that this commutativity is equivalent to the imposition of

the partial differential equation

=0
where _ = f® I and the bracket [,] is the Jacobi bracket given by the formula

[hl,h2] = (Jh2)hl - (Jhl)h2

0h----L/isthe Jacobian matrix of any vector field h. Here, the superscript i on h
in which (Jh)ij = Oxj

denotes the ith coordinate of h. A solution g is called an infinitesimal generator of a one-

parameter family of symmetries off, or just an infinitesimal generator or just generator for f.

Having cast the basic re-expression question into the language of Lie theory we can now

make some general statements: The infinitesimal generators of f constitute a Lie algebra relative

to the Jacobi bracket product, generally infinite dimensional. The infinite dimensionality is good

news for it indicates that the potential for data re-expression is extensive. (Since g is autonomous

the inverse transform is accomplished by application of the [-g]-solver).

Of course [h, h] = 0 for every vector field h, hence _ is always an infinitesimal generator

for f. Therefore g = _provides trivial re-expression, namely, the restarting of the [/]-solver using

the most recently computed value of (t, x) computed as initial input. In particular it provides the

simple test wherein one restarts the [/]-solver with initial data (t l, x 1) where x l is the value

returned for fir(t1, to, Xo) and compares it with the value X'o returned for rlf(to, tl, xl). If

I 20 - xo [is not small the approximate solution for fir(t, to, xo) produced by the W-solver is

rendered suspect. (We assume that the solver is written so that it computes backward as well as

forward trajectories.)

Fortunately the entire Lie algebra of symmetries off need not be computed. (It can be con-

structed from rl f but this construction is only of theoretical interest.) Once a single generator g for

f is found its [g]-solver with input data (to, Xo) produces a one parameter family,

. B10.

f/0, g0)g = rig(a, 0, to, x0), of re-expressed values of the initial data. If two or more generators

are found in addition to _then others can easily be obtained via bracket products and linear combi-

nations since they generate a subalgebra. Of course the more generators one finds the greater is

the capability for doing the re-expression. Even though it is possible to transform the initial data

to arbitrary values in specific instances, in general, this is not the case.

For special differential equations, namely those arising from a single scalar higher order dif-

ferential equation methods are available for computing infinitesimal generators and the Lie alge-

bras obtained are finite dimensional. (see [6, 25].)

In applications a finite and perhaps small number of generators might prove adequate. One

might restrict the choice to a parameterized family as illustrated by Example 3.1 of this article

where

f(t'Xl,X2) = Xl , ga_y(X, Xl,X2) = ff.Xl+([3+l)x 2

+ 1)xi +

Although it is a simple matter to write down the exact solutions to the differential equations

given by these vector fields, since they are linear, such generally is not the case. We include the

following theorem which gives an algebraic criterion for commutativity within a class of non-

linear differential equations whose members are not readily solvable except by numerical

methods.

Theorem

Let A and ,_ be real n×n matrices having the same eigenvalues, i.e., they have the same

characteristic polynomial. Select any vectors L, 4, _ in R n.

Then the vector fields

f (x) = e_rxA ; , _f(X) = e

commute if

(k=l, 2, • • • ,n-l).

Proof. In [21] it is shown that for any n×n matrix A, and ; in R n,

-Bll-

etA_ = [_, A_, • • • , An-l_][y 0 , By ° , • • • , Bn-ly°]-tetny°

for some n×n real matrix B and y0 in R n depending on only the characteristic polynomial of A,

i.e., on the eigenvalues of A with their multiplicities. Consequently, in the notation of the theorem

being proved,

for some y

pute

f (x) = [_ , A _ , • • • , A n-l _][y ° , By 0 , • • • , Bn-lyO]-l e_'rxByO

f(X) = [_,A_, " " • ,._n-l_][y 0 , By 0 , " " " , Bn-lyO]-l e_fxByO
f

o in R n and nxn matrix B. Letting f (x) denote the Jacobian matrix off (x) we corn-

• . . , An-l_][y ° , By ° ,
p

f (x)_f(x) = [_, A_, • . . , Bn-ly°]-lBekrxByO_. T

, Bn-lyO]-leffXByO.['_,,_, "," • ,An-l_]tv0 ,By O, • . .
N

Therefore for f'(x)_(x) = f (x)f (x) it is sufficient that

[_ , A _ , • • • , A n-l _][y° , By° , . . .

[_, A_," • . , An-l_l[y 0 , By 0 ,

This equation can be rewritten as

d etA;_T[_ _ . . .
dt ' '

which is equivalent to

d
,_n-l_] = "_ etX_ T[_ , A_ ' . . . ,An_l_]

etAA _ T[_ ' ,_, . . . , ,_n-l_] = etX_T[; , A ; , • • • , A n-l _] .

But writing out the exponential functions in series shows that the above equation is equivalent to

the matrix equations

Aka; .Tg, • • •, = A;, • • ', A"-I;]
k = 0, 1, 2, • • •). Since A and A" are assumed to have the same characteristic polynomial we

we see by the Cayley-Hamihon theorem that if the equations hold for k + 1 = 1, 2, • • , n-1

then they will automatically hold for the remaining values of k. This concludes the proof.

In concluding this section we mention some related work published by one of the authors

(Lukes [22]) which takes an arbitrary linear controllable differential equation and asks: What

linear input, output and feedback filters can one wrap around the dynamical system in a manner

that leaves the overall input-output characteristics invariant but alters the inputs that the original

dynamical system would experience? There it was shown that each controllable system admits its

own Lie group of such filters. Moreover the group can be computed. This group expresses the

-B12-

original system's potential for fault avoidance. The present article continues a variation of that

theme which started in [2] where it was discussed in the context of general programs. The

hypothesis being proposed suggests that there is a potential for designing software and perhaps

some hardware in a manner where the parameters enter in such a fashion that at least certain

classes of faults could be reasonably tolerated using ideas discussed in other sections of this paper.

4. RELIABILITY GUARANTEES

We now rework the example given in the previous section to show how one can go about

developing a system that offers probabilistic guarantees of reliability. We show that it is possible

to employ data redundancy in such a way so as to justify applying the independence model dis-

cussed earlier. It should be noted that many of the re-expression techniques cited below are stan-

dard practice in the numerical methods area [14]. The focus here is to use these techniques in

such a way so as to allow the use of the independence model described in Section 2.

4.1. The Oscillator Revisited

The differential equation describing the oscillator accepts the following transformation:

[.'yl]2 = [-_%1 _+l][:xl]0_ 2

I.e., the transform in o_ and 13maps solutions of the differential equation to other solutions of the

differential equation. Suppose we are given input x. We can choose random values for cx and 13

and derive a new input y. After we compute P(y), we can, in the absence of failure, use the

inverse transformation to retrieve the desired quantity P(x). It is important to note that the distri-

bution for y is not the usage distribution. As will be shown in the pilot study in Section 5, this

seemingly unimportant detail destroys the ability of the model from Section 2 to accurately

predict the failure probability of a data redundant system. However we can avoid the problem by

selecting y from the usage distribution and then deriving the quantities c_ and [3 that map x to y.

With this mode of operation, the independence model does apply.

A standard technique that applies to linear equations is superposition. We may exploit

superposition for fault tolerance in such a way that the independence model applies. However,

some care is required. Consider an input x. Suppose that we break x into two inputs y and z

- BI3 -

where x = y+z. If we choose y from the usage distribution and then compute z = x-y, we are

justified in using the independence model. If we instead compute y uniformly from the interval

[0, x], the independence assumption no longer applies. Again, the difference between these two

approaches is illustrated in the pilot study reported in Section 5.

As a final note, we have only addressed the problem of transforming x. We note that we can

handle the time parameter t in a number of standard ways. The most straight forward is to note

that the we may choose another time interval tl at random, and then derive t 2 = t-t1. We can

then compute P (P (X, tl),t2) = P (x,t) Another standard technique for dealing with faults that man-

ifest themselves in specific values of the t parameter is to adjust the step size At.

4.2. General Theory

The theory in Section 3 explains how to derive various differential equations to transform the

initial input. In general, the reliability of the solver implementing these alternate differential

equations may be suspect. However, in some cases these differential equations are sufficiently

simple that they correspond to simple algebraic manipulations. For differential equations of

sufficient interest, i.e. differential equations in critical control systems, it is not unreasonable to

expect that the Lie symmetries be known. And since any Lie group may be reparameterized, it

may be reasonable to rework the equations so that "standard" transforms, such as scaling, rota-

tion, and translation are admitted. The complete details of such an approach constitute an impor-

tant open question.

5. PILOT STUDY

In this section we describe a pilot study that investigates the behavior of various data redun-

dancy strategies applied to a differential equation solver.

5.1. Design

We consider an implementation of a specific differential equation solver, namely a Runge-

Kutta 4th Order solver [14]. We note that the selection of any other standard solver would have

been appropriate. We investigate the behavior of the solver on the harmonic oscillator example

presented in Section 3.1.

- B14.

Theparameterwevaryover thecourseof the experiment is the data re-expression algorithm.

We explore 5 different re-expression algorithms; 2 are based on the independence model dis-

cussed in section 2, and the other 3 are not. By including both types of strategies, the study illus-

trates the general properties of independence model discussed previously.

The first strategy, labeled '1' in subsequent figures, was outlined in the example in Section

3.1. The program P, along with three parameters c_, 13and y, is used in the re-expression algo-

rithm. The second two strategies are based on the observation that the two parameter transform

described in Section 4.1

[y:] = [_ o__1 13+ 1] [x:]

maps solutions of the oscillator onto other solutions. In the strategy labeled '2', the parameters c_

and 13are chosen at random; the alternate input y is then derived from the given transformation. In

the strategy labeled '3', the alternate input y is chosen at random, and ot and 13are derived accord-

ing to the transformation. We will see that this seemingly slight difference between the two

methods can have a dramatic impact on performance. The fourth and fifth strategies are based on

the fact that for linear systems, sums and scalar multiples of solutions are also solutions. We

derive two inputs from the original input; run the solver on both, and then sum the two results. In

the strategy labeled '4', the alternate inputs are derived by choosing two scale factors, o_ and 13at

random. In the strategy labeled '5', one alternate input is chosen at random, and the other is

derived by subtracting it from the original input. Again, we will see that this seemingly slight

difference between the two methods can have a dramatic impact on performance.

For this experiment, the focus is on examining the properties of various data re-expression

algorithms with respect to the independence model. For that reason, we have chosen not to apply

the model to a large or representative variety of software faults. If we are able to select inputs

apparently at random according to the usage distribution, then the characteristics of the particular

software faults are irrelevant to the performance of the data redundant system. If the inputs are

not randomly selected, the details of the various faults are then vitally important. The goal of the

experiment here is to highlight this distinction, not fully evaluate the consequences of failing to

meet requirements of the independence model.

- BI$-

For the reasons outline above, the solver was seeded with a single generic fault that caused

failure if the tolerance between the two components of the solution dropped below a certain thres-

hold. Such a fault could arise in a variety of locations in typical implementation; for example,

such a fault could arise in a relative error test for convergence. In addition, the tolerance level

provided a convenient handle to adjust the failure rate of the fault to any desired level. In short,

the generic fault is ideal for the experiment described here. For experiments designed to evaluate

general data re-expression algorithms on arbitrary faults, a method such as mutation analysis [12]

or fault-based testing [24] would be appropriate, t

5.2. Results

We now present the results of evaluating the 5 data redundant strategies described above.

The particular mechanism that we use for analysis is the retry block with a single retry. In fig. 4,

0. Original Program: P[0,0,1] (x,t)

1. P [a, _,'tl (..-)

2. P[a,13,11 (x,t), random oq 13

3. P[a, I3,U (x,t), random x

4. P[o,o,1] (Xl,t) + P[o,o,1] (x2,t), random or, 13

5. P[o,o,1] (Xl,t) + P[o,o,1] (x2,t), random Xl

Component

Fig. 4. Observed Component Failure Probabilities

1(_-5 l(_--n 1(_-3 1(_-2 10-1 _

Failure Probability

_"See, for example, [16].

-B16-

we present the observed component failure probabilities for each of the five strategies.

Confidenceboundsarenotreportedon thefigurebecausethebullets thatrepresenteachdatapoint

encompassthe 90% confidencebound. The strategylabeled '0' correspondsto the differential

equation solver operating on the original input without any application of data redundancy.

Severalpointsin fig. 4 warrantnotice. First, for strategies'1', '4', and '5', thefailure probability

of the componentexceedsthatof the original program. This is becausemultiple executionsof P

are required for each of these strategies. Second, for strategy '3', the failure probability of the

component matches that of the original program. This is reasonable, since only a single execution

of P is required, and that execution occurs on an input chosen according to the usage distribution.

Finally, the failure probability for the component in strategy '2' is substantially lower than for the

original program. How is this possible? It turns out that the data re-expression .algorithm for stra-

tegy '2' happens to map to inputs in a region of the domain with a lower failure probability for the

given fault. This is entirely a function of the particular fault; for other faults the situation could

easily be reversed. Thus the relatively low value of the failure probability for strategy '2' should

not be viewed as a desirable result.

1. P la, P._,I ("')

2. Pla,[3,1] (x,t), random o_,

3. P[a,$,ll (x,t), random x

4. Pt0.0,11 (xl,t) + P[0.0,1l (x2,t), random ct, 13

5. Pt0,0.1l (X1 ,t) + PI0,0,11 (Xz,t), random xt

System

1(_-5 10-1

e
x

x

xl e

10 -4 10-3 1J-2

Failure Probability

Fig. 5. Single Retry System Failure Probabilities: Observed (O) and Independence Model (x)

- B17 -

In fig. 5, we present failure probabilities for systems built from the components enumerated

in fig. 4. Each system is a retry block in which component '0' executes first. If component '0'

fails, then a data redundant component executes. Entries in fig. 5 are the probabilities that both of

these computations fail coincidentally; e.g. we define this event as system failure. Entries marked

by a circle are the observed system failure probabilities. A 90% confidence bound is placed

around each observation. Entries marked by a cross are the failure probabilities predicted by an

independence model. These values are simply the product of the corresponding entries from fig.

4.

There are several important points to note about fig. 5. First, the failure properties of the two

strategies ('3' and '5') that explicitly selected alternate inputs according to the usage distribution

agree with the independence model. Second, for the strategies in which we selected random

parameters instead of random inputs ('2' and '4'), note that the independence model clearly does

not apply. In the case of strategy '4', the performance falls short of the independence model. In

the case of strategy '2', the performance in much better; again the reader is cautioned that this is

purely an artifact of the fault under study. Other faults would produce other behavior.

6. CONCLUSIONS

We have outlined a general theory for applying data redundancy to differential equation

solvers. On cost considerations alone, these should be considered serious candidates for fault-

tolerance. They are also very strong candidates for error detection at test time.

We have given a simple example of such an application. The example demonstrates that the

overhead to apply such techniques is not prohibitive, and that many degrees of freedom are possi-

ble in specifying alternate data. We have evaluated the example experimentally under a variety of

data re-expression algorithms. The pilot study illustrates the areas of concern in implementing a

data redundant system under an independent failures model.

Design redundant systems cannot guarantee high system reliability based on moderate com-

ponent reliability. In general, data redundant systems suffer from the same limitation. However,

specific applications of data redundancy can employ random algorithms to achieve guarantees of

very high system reliability. We have taken a first step in applying random algorithms to the dif-

ferential equations area.

-B18-

REFERENCES

[1] P.E. Ammann, "Data Redundancy for the Detection and Tolerance of Software Faults", Proceedings
interface '90, East Lansing, MI, May, 1990.

[2] P.E. Ammann, "Data Diversity: An Approach To Software Fault Tolerance", PhD Dissertation,
University of Virginia, January, 1988.

[3] P.E. Ammann and J.C. Knight, "Data Diversity: An Approach To Software Fault Tolerance", Digest
FTCS-17: Seventeenth International Symposium on Fault Tolerant Computing, Pittsburgh, PA, July,
1987, pp. 122-126.

[4] P.E. Ammann and J.C. Knight, "Data Diversity: An Approach To Software Fault Tolerance", IEEE

Transactions On Computers, Vol. 37, No. 4, April, 1988.

[5] M. Blumen and S. Kannan, "Program Correctness Checking ... and the Design of Programs That
Check Their Work", Technical Report TR-88-013, International Computer Science Institute, Berke-
ley, CA, December, 1988.

[6] G.W. Blumen and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York:
1989.

[7] S.S. Brilliant, "Testing Software Using Multiple Versions", PhD Dissertation, University of Virginia,
January, 1988.

[8] S.S. Brilliant, J.C. Knight, and N.G. Leveson, "The Consistent Comparison Problem in N-Version
Software", IEEE Transactions on Software Engineering, Vol. 15, No. 11, November, 1989.

[9] S.S. Brilliant, J.C. Knight, and N.G. Leveson, "Analysis of Faults in an N-Version Software Experi-
ment", IEEE Transactions on Software Engineering, Vol. 16, No. 2, February, 1990.

[10] S.S. Brilliant, J.C. Knight, and P.E. Ammann, "On The Performance of Software Testing Using Mul-
tiple Versions", Digest FTCS-20: Twentieth International Symposium on Fault Tolerant Computing,
Newcastle Upon Tyne, UK, June, 1990.

[11] L. Chen and A. Avizienis, "N-Version Progr_ming: A Fault-Tolerance Approach to Reliability of
Software Operation", Digest FTCS-8: Eighth International Symposium on Fault Tolerant Comput-
ing, Tolouse, France, June, 1978, pp. 3-9.

[12] R. DeMillo, R.L Lipton, and F.G. Sayward, "Hints on Test Data Selection: Help For the Practicing
Programmer' ', IEEE Computer, April, 1978.

[13] D.E. Eckhardt and L.D. Lee "A Theoretical Basis For The Analysis Of Multiversion Software Subject
To Coincident Errors", IEEE Transactions on Software Engineering, Vol. SE-11, No. 12, December
1985.

[14] R.W. Hombeck, Numerical Methods, Quantum Publishers, New York: 1975.

[15] J.C. Knight and P.E. Ammann, "Design Fault Tolerance", to appear in Reliability Engineering and
System Safety, 1990.

[16] J.C. Knight and P.E. Ammann, "On The Effectiveness of Data Diversity As An Error Detection
Mechanism", submitted to FTCS 21.

[17] J.C. Knight and N.G. Leveson, "An Empirical Study of Failure Probabilities in Multi-Version

Software", Digest FTCS-16: Proc. 16th Int. Symposium on Fault Tolerant Computing, Vienna, Aus-
tria, July, 1986, pp 165-170.

[18] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the Assumption of Independence in

Multiversion Programming", IEEE Transactions on Software Engineering, Vol. SE-12, No. 1, Janu-
ary 1986.

[19] N.G. Leveson and P.R. Harvey, "Analyzing Software Safety", IEEE Transactions on Software
Engineering, Vol. SE-9, No. 5, September 1983.

[20] R.J. Lipton, "New Directions in Testing", Proceedings Interface '90, East Lansing, MI, May, 1990.

- BI9 -

[21] D.L. Lukes, Differential Equations; Classical to Controlled, Academic Press, New York. 1982.

[22] D.L. Lukes, "Lie Groups Underlying Fault Avoidance in Dynamical Control Systems", Proceedings
of the 1988 International Conference on Advances in Communication and Control, VoI.II, pp. 841-
848, Baton Rouge, LA, October 1988.

[23] D.R. Miller, "The Role of Statistical Modeling and Inference in Software Quality Assurance", In

Software Certification, ed. B. de Neumann, Elsevier Applied Science, London, UK, 1989.

[24] L.J. Morell, "A Theory of Fault-Based Testing", IEEE Transactions on Software Engineering, Vol.
16, No. 8, August 1990.

[25] P.J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York: 1986.

[26] D.L. Pamas, J van Schouwen and S.P. Kwan, "Evaluation of Safety-Critical Software", Communica-
tions of the ACM, Vol. 33, No.6, June, 1990.

[27] B. Randell, "System Structure for Software Fault Tolerance", IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, June 1975.

[28] F. Saglietti and W. Ehrenberger, "Software Diversity - Some Considerations About Its Benefits And

Its Limitations", Digest of Papers: SAFECOMP '86, 5th International Workshop on Achieving Safe
Real-Time Computer Systems, France, October, 1986.

[29] D.P. Siewiorek and R.S. Swarz, The Theory and Practice bf Reliable System Design, Digital Press,
Bedford, MA, USA, 1982.

[30] M.A. Vouk, M.L. Helsabeck, K.C. Tai, and D.F. McAllister, "On Testing of Functionally Equivalent

Components of Fault-Tolerant Software", Proc. COMPSAC 86, 1986, pp. 414-419.

- B20 -

1-3

4-5*

6

7-8

9- 10

11

12

DISTRIBUTION LIST

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention: Dr. D. E. Eckhardt, Jr., ISD

M/S 478

National Aeronautics and Space Administration

Scientific and Technical Information Facility

P. O. Box 8757

Baltimore/Washington International Airport

Baltimore, MD 21240

National Aeronautics and Space Administration

Acquisition Division

Langley Research Center

Hampton, VA 23665

Attention: Mr. Richard J. Siebels

Grants Officer, M/S 126

E. H. Pancake, Clark Hall

J. C. Knight, CS

A. K. Jones, CS

SEAS Preaward Administration Files

*One reproducible copy

JO#3910:ph

